TEST-RETEST RELIABILITY OF INDEPENDENT PHONOLOGICAL MEASURES OF 2-YEAR-OLD SPEECH: A PILOT STUDY

Katherine Marie WITTLER
Shari Leigh DEVENEY

Department of Special Education and Communication Disorders, University of Nebraska at Omaha, USA

Introduction: Within the field of speech-language pathology, many assume commonly used informal speech sound measures are reliable. However, lack of scientific evidence to support this assumption is problematic. Speech-language pathologists often use informal speech sound analyses for establishing baseline behaviors from which therapeutic progress can be measured. Few researchers have examined the test-retest reliability of informal phonological measures when evaluating the speech productions of young children. Clinically, data regarding these measures are critical for facilitating evidence-based decision making for speech-language assessment and treatment.

Objectives: The aim of the present study was to identify the evidence-base regarding temporal reliability of two such informal speech sound measures, phonetic inventory and word shape analysis, with two-year-old children.

Address for correspondence:
Shari DEVENEY
Department of Special Education and Communication Disorders, University of Nebraska at Omaha, 6005 Dodge Street, 512E Roskens Hall, Omaha, NE 68182; USA
Phone: (402) 554-2993, (402)968-6083
E-mail: sdeveney@unomaha.edu
Methods: The researchers examined analyses conducted from conversational speech samples taken exactly one week apart for three children 29- to 33-months of age. The videotaped 20-minute play-based conversational samples were completed while the children interacted with their mothers. The samples were then transcribed using the International Phonetic Alphabet (IPA) and analyzed using the two informal measures noted above.

Results: Based on visual inspection of the data, the test-retest reliability of initial consonant and consonant cluster productions was unstable between the two conversational samples. However, phonetic inventories for final consonants and word shape analyses were relatively stable over time.

Conclusion: Although more data is needed, the results of this study indicate that academic faculty, clinical educators, and practicing speech-language pathologists should be cautious when interpreting informal speech sound analyses based on play-based communication samples of young children.

Keywords: communication disorders, phonetic inventory, phonology, speech, speech-language pathology, word shape analysis

Introduction

Speech-language pathologists (SLPs) rely on formal (i.e., standardized, criterion-based testing) and informal (i.e., observations, clinical judgment, non-standardized) assessment measures to comprehensively evaluate a child’s speech and language development. These measures are used for determining eligibility for intervention services provided in educational or clinical settings. They also offer descriptive information critical to establishing a child’s baseline performance for therapeutic speech-language progress monitoring (1). Informal assessment tools are not intended to be compared to a larger group (i.e., not standardized or norm-referenced). Types of informal assessment measures include clinical observation, parent report, and analysis of a sample of the child’s speech obtained from a

Methods: The researchers examined analyses conducted from conversational speech samples taken exactly one week apart for three children 29- to 33-months of age. The videotaped 20-minute play-based conversational samples were completed while the children interacted with their mothers. The samples were then transcribed using the International Phonetic Alphabet (IPA) and analyzed using the two informal measures noted above.

Results: Based on visual inspection of the data, the test-retest reliability of initial consonant and consonant cluster productions was unstable between the two conversational samples. However, phonetic inventories for final consonants and word shape analyses were relatively stable over time.

Conclusion: Although more data is needed, the results of this study indicate that academic faculty, clinical educators, and practicing speech-language pathologists should be cautious when interpreting informal speech sound analyses based on play-based communication samples of young children.

Keywords: communication disorders, phonetic inventory, phonology, speech, speech-language pathology, word shape analysis

Introduction

Speech-language pathologists (SLPs) rely on formal (i.e., standardized, criterion-based testing) and informal (i.e., observations, clinical judgment, non-standardized) assessment measures to comprehensively evaluate a child’s speech and language development. These measures are used for determining eligibility for intervention services provided in educational or clinical settings. They also offer descriptive information critical to establishing a child’s baseline performance for therapeutic speech-language progress monitoring (1). Informal assessment tools are not intended to be compared to a larger group (i.e., not standardized or norm-referenced). Types of informal assessment measures include clinical observation, parent report, and analysis of a sample of the child’s speech obtained from a
play observation or conversation.
Independent phonological measures, one type of speech sample analysis, are used to assess speech-sound productions without comparison to an adult standard and essentially provide the SLP with information as regards what the child can produce, rather than what he/she cannot.(2) There are several informal independent phonological (i.e., speech sound) analyses available to SLPs including phonetic inventories and word shape analyses. Phonetic inventory is a record of different sounds the child uses, even sounds not produced in the correct word position (2). An SLP completes an index of all the speech sounds a child produces without reference to adult word forms in order to determine the speech sounds present in the child’s conversational speech. For example, if a child said “tat” in place of “cat,” the /t/ production at the beginning of the word is recorded in a speech sound inventory even though the child’s attempt of the adult word form “cat” was inaccurate. The child would be credited for production of the /t/ sound in initial position in the above example even though the word “cat” was produced incorrectly. Word shape analysis is a record of the complexity of sound combinations used by the child in the words that they produce. For example, words with only a consonant (C) and vowel (V) sound (e.g., ‘CV’ sound shape such as in “go” or “she”) are less complex than words with a consonant, vowel, and then another consonant sound. Both phonetic inventories and word shape analyses are important in the diagnostic process for establishing a treatment baseline; that is, phonetic inventory conveys to the SLP which sounds the child produce and in which word positions (initial, medial, final, and/or consonant cluster) so the SLP has an idea of where to begin implementing treatment to target the sounds the child does not yet produce. Word shape analysis provides information on the complexity level of sound combinations typically used by the child.
Few studies have been conducted in order to examine the test-retest reliability of informal phonological measures like phonetic inventory and word shape analysis when evaluating the
lites deca. Eden istrazuvach, Morris (3) gi ochenil primernoite na govor na deset normalo razvesen deca na vrasht od 18 do 22 meseci koristejki go fonetskiot inventar i analizata na zborovnata forma. Za deca bilo utvrdeno deka se so normalen razvoj preku koristejto na kombinacija od merki za skrving na jaizik i rечен. Otako bila utvrdena verodostojnostna od ovaa metoda, sekoj par majka - better utkuvalove vo devoj 20-minutni sessii vo forma na igra, megeszno odeleni tochno jedna nedela. Gоворот на deca potoababse analizirovan od videozapisite koristejki navedeni fonološki merki za analiza. Rezultativite od ovaa studija pokazava deka verodostojnostna na test-redirectovanele analizy spredvedeni na dva razlichni primerozi za govor od jedno isto dete a vo period od dve posledovatelni nedeli, bea nestabilni i ne go prestatuvava istiot broj ili opseg na proizvedeni zvuci. Morris otkrio deca za deca vo ovaa vrasna grupa, brojot na produktsii na prvata segaska se najnestabilna merka. Produktsiite na finallna segaska i analizata na zborovnata forma bese konstantirano deka se umeroni stabilni vo period od jedna nedela, no niti jedna ne go dostigna nevobodno nivo na znacenje. Morris istakna deca ako neformalite merki ne se postojani celo vreme, zalebenite podobruvava vo tekot na terapijata na govoritot jaizik ne moze da prestatuvava vistinski na predok, tu ku namesto toa, ehn e da se smetata za „produvod na nestabilna merka“ (3).

Preston, Ramsdell, Oller, Edwards, and Tobin predlojava koristejto na adaptirani merki za tochnoto na govornite zvuci i se povika na studijata na Morris (3) kako primerna za toa. Adaptiranele merki shto se koristat vo nivnata studija, Adaptirani merki za tochnoto na govornite zvuci (WSSA), bese navedena fonološka merka (4). Taa funkcioniira slicno kako analizata Percen tot na tochni konsonant (PCC) vo koja zborovnite produktsii na deca se sporuzuvata so standardnite na vrasnovini i percentot shto e tochno proizveden se presmetuva vrz osnova na brojot na segasni fonemi (zvuci) shto deteto gi proizveduva na ist chtini kako i vrasnovini (5).

Megeoto, so metodata WSSA, razlichki vidovi greshi se brojat poiniiku. Na primer, neobichnite greshi i ispustanje na fonemite se brojat povsdek otkolku greshiite kon vkluchuvaat voobichaineda zamene. WSSA beše speech productions of young children. One researcher, Morris (3) evaluvatuvo proizveden na deset posto nivno razvoj deca na vrasht od 18 do 22 month old children using phonetic inventory i word shape analysis. Children were determined to be typically developing through use of a combination of language and vocabulary screening measures. Once eligibility was determined, each mother-child dyad participated in two 20-minute play sessions occurring exactly one week apart. The children’s speech was then analyzed from the videotaped samples using independent phonological analysis measures. Results of this study showed that the test-retest reliability of analyses conducted on two different speech samples collected from the same child one week apart were unstable and did not necessarily represent the same number or range of speech sounds produced. Particularly, Morris found that for children in this age range the number of initial consonant productions were the least stable measure over time. Final consonant productions and word shape analyses were determined to be moderately stable over the one-week time span, but neither reached a required level of significance. Morris noted that if the informal measures were not consistent over time, the perceived improvements during speech-language therapy may not represent true progress. Instead, it may be considered as “an artifact of an unstable measure” (3).

Preston, Ramsdell, Oller, Edwards, and Tobin suggested using a weighted measure for speech sound accuracy and referenced the Morris (3) study as a reason for doing so. The weighted measures used in their study, the Weighted Speech Sound Accuracy Measure (WSSA), was an independent phonological measure. (4) It functions as the Percent Consonants Correct (PCC) analysis, in which children’s word productions are compared to the adult standard of production and the percentage produced accurately is calculated based on the number of consonant phonemes (sounds) the child produces in the same way as adults (5). However, with the WSSA, different types of errors are weighted differently. For example, unusual errors and
The WSSA was used to analyze speech samples from a variety of age ranges for both typically developing and disordered speech sound productions. Results indicated that both reliability and validity is high when the WSSA is used as an analysis measure. This research group provided further justification for the use of independent phonological analysis measures, but the use of the WSSA metric has not been applied to an extended variety of speech contexts including connected speech sampling.

Other research has supported the use of informal relational measures for phonological analysis (i.e., comparing the child’s utterance to the adult form of the word) because the test-retest reliability was strong when communication samples were collected for young school-aged children through a structured interview (6). Researchers collected speech samples from 20 kindergartners who were at risk for speech and/or language delays. The samples were taken one week apart. Then, the researchers measured speech sound accuracy using informal relational measures. The study findings indicated strong test-retest reliability for informal relational analyses calculated from structured communication samples for this age group.

Van Severen, Van Den Berg, Molemans, and Gillis (7) studied the effects of conversational speech sample size with 30 Dutch-speaking participants whose ages range from 6- to 24-months. They calculated phonetic inventories using a bootstrapping procedure (i.e., they repeatedly drew random conversational speech samples from a larger, lengthier sample). Researchers concluded that inconsistencies were found for this young age group and the reliability for further informal analyses based from the conversational speech sample depended heavily on the length of the overall sample obtained.

Given previous findings of inconsistencies related to the use of conversational speech samples of young children and reliability of subsequent informal measures, the aim of the present was established. This exploratory
study was aimed at extending Morris’ work by determining test-retest reliability of independent phonological analyses over time for a slightly older child population, 29- to 33-month olds, and children seven- to 15-months older than the sample used in the Morris study (3). In view of the scarcity of data regarding the test-retest reliability of phonological development, pilot work in this area was proposed for a variety of reasons including providing justification for further investigation through the collection of preliminary data, assessing the viability of data analysis techniques, and estimating potential outcome variability for future full-scale studies.

In order to consistently use evidence-based decision making throughout the assessment and treatment process, SLPs need to have evidence-based information regarding the reliability of informal independent phonological analyses collected from communication samples of young children across differing language development stages. The specific age range was targeted in the present study because at this stage during typical language development the majority of children experience rapid vocabulary growth resulting in an expressive vocabulary ‘explosion’ and the onset of multi-word utterances. Moreover, many young children receiving speech-language services are also beginning to transition from one- to multi-word utterances and reliable measures for documenting phonological gains during this process are essential for evaluation decisions, progress monitoring, and treatment planning.

The following research questions were addressed:

1. For two-year-old old children, what is the short-term (within one week) test-retest reliability of phonetic inventory when calculated using a 20-minute communication sample?

2. For two-year-old old children, what is the short-term (within one week) test-retest reliability of word shape analysis when calculated using a 20-minute communication sample?
2. Materials and Methods

All participant interactions, recruitment, and project procedures were conducted in accordance with the ethical standards of the University of Nebraska at Omaha and University of Nebraska Medical Center Institutional Review Board. The original research was approved by this governing body prior to the beginning of data collection (IRB #035-14-EP).

2.1 Participants

Participants included three children between the ages of 29- to 33-months of age. Children were identified as having no known delay in language development through completion and scoring of two screening measures. First, the Preschool Language Scale - Fifth Edition (PLS-5) was administered during the first of two experimental sessions (8). The PLS - 5 is a standardized, norm-referenced assessment instrument commonly used by SLPs in educational settings to evaluate the receptive and expressive language skills of preschool-aged children. In order to be included in the study as a child without a language delay, the participants needed to receive a standard score $(M = 100, SD = 15)$ of 85 or above for total language development. The three participants scored above average on the expressive communication subtest (standard score range: 119-126) and one participant scored above average on the auditory comprehension subtest (standard score: 120). Other scores indicated language function within typical age-level expectations. In addition, the MacArthur Bates Communicative Development Inventory - Words and Sentences (CDI) was used as a screening measure (9). The CDI is a 680-word parent checklist that is standardized and norm-referenced to measure a young child’s expressive vocabulary. Again, this is a measure routinely used by practicing SLPs when evaluating the vocabulary skills of young children. Scores at or above the 25th percentile qualified a child to participate in the present study. All participants were monolingual native English speakers whose parents reported neither concerns for speech or language development nor hearing or vision abilities. See Tables 1 and 2 for descriptive participant information.
Табела 1. Описни информации за учесниците: стандардизирани мерки

<table>
<thead>
<tr>
<th>Опис / Descriptor</th>
<th>Учесник / Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Возраст / Age</td>
<td>Учесник / Participant 1</td>
</tr>
<tr>
<td></td>
<td>33 месеци / months</td>
</tr>
<tr>
<td>Пол / Gender</td>
<td>маки / male</td>
</tr>
<tr>
<td>PL5-5 експ. / PLS-5 Exp.</td>
<td>126</td>
</tr>
<tr>
<td>Соодр. резултат / Standard Score</td>
<td>95</td>
</tr>
<tr>
<td>Перцентили / Percentile</td>
<td>95</td>
</tr>
<tr>
<td>PLS-5 ауд. / PLS-5 Aud.</td>
<td>120</td>
</tr>
<tr>
<td>Перцентили / Percentile</td>
<td>91</td>
</tr>
<tr>
<td>CDI / CDI III / CDI/CDI III</td>
<td>75 (CDI)/65(CDI III)</td>
</tr>
</tbody>
</table>

Претучилишна јазична скала – 5. издание, потест за експретивна комуникација

Макаруш Бейтс Развој на инвентар за комуникација – зборови и реченици (CDI)/Макаруш Бейтс Развој на инвентар за комуникација – продолжение (CDI III) спроведено кај деца на возраст од над 30 месеци. Два учесника беа на возраст од 30 месеци или постари (P1 и P2), поради тоа и учесниците покажаа процентен опсег и за CDI и за CDI III.

Табела 2. Описни информации за учесниците: мерки базирани на примерок

<table>
<thead>
<tr>
<th>Опис / Descriptor</th>
<th>Учесник / Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>ПДИ / MLU</td>
<td>Учесник / Participant 1</td>
</tr>
<tr>
<td>Сесија 1 / Session 1</td>
<td>3.32</td>
</tr>
<tr>
<td>Сесија 2 / Session 2</td>
<td>2.70</td>
</tr>
<tr>
<td>Вкупно зборови / Total Words</td>
<td>402</td>
</tr>
<tr>
<td>Сесија 1 / Session 1</td>
<td>319</td>
</tr>
<tr>
<td>P1</td>
<td>15</td>
</tr>
<tr>
<td>Cesija 1 / Session 1</td>
<td>14</td>
</tr>
<tr>
<td>Последни согласни / Final Consonants</td>
<td>14</td>
</tr>
<tr>
<td>Cesija 2 / Session 2</td>
<td>13</td>
</tr>
<tr>
<td>Групи согласни / Consonant Clusters</td>
<td>16</td>
</tr>
<tr>
<td>Cesija 1 / Session 1</td>
<td>12</td>
</tr>
<tr>
<td>Форма на збор / Word Shape</td>
<td>8</td>
</tr>
<tr>
<td>Cesija 1 / Session 1</td>
<td>8</td>
</tr>
</tbody>
</table>

Фонетски инвентар (ФИ) за продуктивни согласни употребени на определена позиција во најмалку два различни зборови во текот на примерокот

Форма на збор, Анализа на осум различни целни форми на зборови: V, CV, CVCV, VC, CVC, CCVC, CVCC и CVCVC
2.2 Setting and Procedures

All data collection was conducted and recorded at a university campus speech-language pathology clinic. At this site, graduate students in speech-language pathology typically provided assessment and therapeutic services to a community-based clinical population. In the clinic, standard small individual therapy rooms included an adjustable table, three to four chairs, and a small cabinet. In addition, each therapy room was fitted with a remote recording system, the Interactive Session Recorder (ISR) system, set up to record audio and visual documentation of clinical interactions through video cameras secured in the ceiling.

After the first author administered the screening measures, two 20-minute conversational speech samples were collected from each child while he/she was interacting with his/her parent with toys available for play. Two different sets of toys (e.g., farm, grocery, kitchen, cars with garage) were randomly assigned to each participant for each of the two sessions conducted exactly one week apart. For each participant, the same two sets of randomly assigned toys were available each week. The child and caregiver were instructed to utilize the toys either simultaneously or one at a time based on their child’s interests. The sessions were recorded using the ISR system present in all clinic rooms which includes adjustable wall/ceiling mounted video and audio recorders. These recordings were later reviewed by research personnel for transcription and analysis. Each participant’s speech productions were transcribed using the International Phonetic Alphabet (IPA) and analyzed using two separate informal speech sound analyses; phonetic inventory and word shape. Reliability procedures were aligned with those used by Morris (3) in that all vocalizations from each session were reviewed and transcribed. Transcriptions were completed by the first author and a second transcriber. Second transcribers were students majoring in speech-language pathology trained in IPA transcription. In contrast to Morris, the researchers did attempt to achieve phoneme-by-phoneme agreement between the two
transcribers. Although, the researchers noted concern about lower transcription reliability using this method, the motivation for achieving a precise and accurate measure of each phonemic production was paramount. When instances of disagreement occurred between the first author and a second transcriber related to a particular phoneme, together the two reviewed the child’s production of the disagreed upon utterance and reached an agreement. If an agreement could not be reached after three review attempts, the utterance was not used in the final analysis. Initial inter-rater reliability was just above 62% (38% disagreement); however, after reviewing utterances with disagreement, transcribers resolved 100% of disagreements by discussing the videos together. Low inter-rater transcription reliability is a documented concern in the field of speech-language pathology, particularly when phonetically transcribing the connected speech of young children whose limited phonological development results in speech samples that are quite different from an adult’s sample of mature and well-formed speech production (10). Even with the more precise agreement requirements, the initial transcription reliability of the present study was 11% higher than that of Morris who noted 27% initial disagreement (3). The primary reason for the increase in disagreement is likely two-fold: (1) the present study researchers’ attempt to achieve phoneme-by-phoneme agreement and (2) data recording instrumentation. Morris used a combination of freestanding and remote microphones, while the present study used wall/ceiling mounted recording devices (3). Although used in a quiet, small room with little background noise interference, the distance of the recording device from the sound-source may have resulted in lower-quality sound capture for later transcription, which could have resulted in increased transcription variability. The two informal speech sound analyses, phonetic inventory and word shape analysis, were conducted for each 20-minute speech sample for each participant. Results were compared between each child’s first and second sample through visual analysis.
3. Резултати

3.1 Фонетски инвентар

При пресметување на фонетските инвентари на учесниците, согласните се сметаат за „продуктивни“ за одреден збор позиција ако детето покаже употреба на согласна во два различни збора за време на примерокот. Согласните се сметаат за „нови“ ако детето ги произведува само во еден збор или позиција во текот на примерок. Визуелната анализа на резултатите за продуктивни, нови и вкупен број на согласни (види слика 1) укажаа на тест-ретестирани недоследности за пресметаните фонетски инвентари. Како недоследност се смета ако постои разлика од три или повеќе согласни во еден целен збор. Оваа точка на исклучување беше избрана билејки претставува разлика од нешто повеќе од една стандардна девијација и за почетната (2.75 за сесија 1 и 2,91 сесија 2) и за крајните согласни (1,48 за сесија 1 и 2,05 за сесија 2) во наодите од студијата од Morris (3). Поточно, како што може да се види во табела 2 и слика 1, вториот и третиот учесник (П2, П3 соодветно) произведо неконзистентен број на продуктивни почетни согласни помеѓу двете сесии (15 во првата сесија, 18 во втората сесија и 4; 10, соодветно), додека првиот учесник (П1) произведе конзистентен број на продуктивни почетни согласни (15; 14). Визуелната анализа на произведените финални согласни кај сите тројца учесници остана релативно конзистентна меѓу двете сесии (14; 13, 12; 10, 7 и 7). Сепак, недоследности беа забележани во бројот на продуктивните согласни групи произведени меѓу две сесии кај двајца од тројцата учесници. П1 и П2 користеле неконзистентен број на продуктивни согласни групи (16, 12, 5; 13), додека П3 покажа употреба на конзистентен број на согласни групи (4 : 4) и во двете сесии.

3. Results

3.1 Phonetic Inventory

When calculating participant phonetic inventories, consonants were considered ‘productive’ for a particular word position if the child demonstrated use of the consonant in two different words during the sample. Consonants were considered ‘emerging’ if the child produced them in only one word or position during the sample. The visual analysis of the results for productive, emerging, and total consonants used (see Figure 1) indicated test-retest inconsistencies for the calculated phonetic inventories. An inconsistency was indicated if a difference of three or more consonant productions in a target word position were present. This cutoff point was selected because it represented a difference of just over one standard deviation for both initial (2.75 for session 1 and 2.91 session 2) and final consonants (1.48 for session 1 and 2.05 for session 2) in the study findings from Morris (3). Specifically, as evident in Table 2 and Figure 1, the second and third participants (P2, P3 respectively) produced an inconsistent number of productive initial consonants between the two sessions (15 in the first session; 18 in the second sessions and 4;10, respectively), while the first participant (P1) produced a consistent number of productive initial consonants (15;14). Visual analysis of productive final consonant productions by all three participants remained relatively consistent between the two sessions (14; 13, 12; 10, 7;7, respectively). However, inconsistencies were noted in the number of productive consonant clusters produced between the two sessions in two of the three participants. P1 and P2 used an inconsistent number of productive consonant clusters (16;12, 5;13), while P3 demonstrated the use of a consistent number of consonant clusters (4;4) across the two sessions.
Фонетски инвентар: Почетни согласки / Phonetic inventory: Initial consonants

Фонетски инвентар: Последни согласки / Phonetic inventory: Final consonants

Фонетски инвентар - Групи на согласки / Phonetic inventory - Consonant clusters

Слика 1. Фонетски инвентар на почетни согласки, последни согласки и групи согласки по сесија.

Figure 1. Phonetic inventories of initial consonants, final consonants, and consonant clusters by session.
3.2 Word Shape Analysis

When calculating the presence of target word shapes in the communication samples, participants were credited for a word shape if the sequence of sounds were produced in at least two different words across the sample. The researchers specifically analyzed eight different target word shapes including V, CV, CVCV, VC, CVC, CCVC, CVCC and CVVC. As shown in Table 2, no substantive differences were found across the two sessions for any participant. All participants produced at least two different words in each of the eight target word shape categories. Consequently, word shape analysis findings were consistent for all participants across the two sessions.

Discussion

The present study represents an early attempt to begin to determine the test-retest reliability of two different informal independent phonological analyses, phonetic inventory and word shape analysis for 2-year-old children with no known language delay. Clinically, data concerning these measures are quite valuable for facilitating evidence-based decision making for speech-language diagnosis and intervention. In the present study, results for the first research question regarding the test-retest reliability of phonetic inventory of 29- to 33-month old children calculated from a 20-minute communication sample indicated mixed findings. The results indicated partial support for previous conclusions regarding inconsistent measures of phonetic inventory (3, 7). Two of the three participants obtained inconsistent phonetic inventories for word-initial sound productions and consonant cluster productions (i.e., production of two adjacent consonant sounds such as “sn” in “snake” or “pl” in “plate”), while two of the three indicated consistent profiles for word-final sound productions over the two data collection sessions. These findings indicated that two of the three participants produced approximately the same number of productive final consonants in Session 1 as they did in Session 2, but did not produce approximately the same number of productive initial consonants or consonant clusters across sessions. Morris found that for 18- to 24-month old children, final sound productions were more stable than initial
The second research question addressed in the present study regarding the test-retest reliability of a word shape analysis calculated using the 20-minute communication sample. In this instance, findings were consistent with Morris (3) in that all participants demonstrated consistent word shapes over the two sessions. The present study findings indicated that measure used for word shape analysis was more temporally reliable than phonetic inventory over a one-week period with three 29- to 33-month old children.

The use of a 20-minute communication sample, which was consistent with Morris’ procedures, may be at cause for these differences in measurement consistencies (3). As noted, a standard communication sample measurement time has not been established and applied consistently in the speech-language pathology professional community (7). The present findings support further investigation into the optimal communication sample time used for analysis since the findings were inconsistent across studied measurement analyses. For instance, the 20-minute play-based sample time allotted adequate time for each participant to demonstrate multiple uses of a number of different word shapes, but may not have allowed adequate time for each to demonstrate the use of all of the speech sounds in their expressive repertoire. More research into these important variables is needed, particularly as they relate to the analysis of speech for young children.
4.1 Educational and clinical significance

Since no measurement method – formal or informal - will have perfect agreement across administrations (e.g., the CDI has a correlation across one-month test-retest administrations that ranges from 0.61-0.95) (9), the finding that a few instances of difference across sampling times does not directly provide evidence that the measure is inappropriate for clinical use. Rather, when informal phonological measures are used in clinical settings for evaluations, goal development, and/or progress monitoring over time, clinicians should use caution in interpretation. Multiple sources of data should be considered during an evaluation and when monitoring therapeutic progress so that decisions and reports are based on more than one converging measurement tool. Additionally, the researchers urge caution among speech-pathology academic and clinical educators when advising graduate students to use informal independent phonological measures calculated from a young child’s communication sample. Because the temporal reliable for phonetic inventories has not be established for children under three-years of age, we should use caution when advocating for their use with this young population. In addition, practicing SLPs working with a young clientele should exert similar restraint when using phonetic inventories for baseline or descriptive information. While these measures provide descriptive information helpful for baseline and therapeutic progress documenting, inconclusive test-retest reliability indicators imply that use of other alternative assessment tools may be necessary or multiple baseline measures undertaken to provide a more representative sample of a child’s speech production abilities. Not all informal independent measures are created equally and test-retest reliability does seem to vary across analyses with word shape analyses appearing to be more stable over time than phonetic inventories. Finally, SLPs need to be aware and mindful of the factors that may influence the reliability of these informal measures including age of child, length of sample collected, phonetic materials, corpus size, as well as data collection and transcription procedures.
4.2 Limitations and future directions

A number of factors limit the potential for generalization of the present study results including the small sample size and data analysis techniques. Consequently, the present study does not yet provide clear clinical guidelines for use of informal phonological measures with young children nor does it sufficiently expand the evidence base for clinical decision making in speech-language pathology. Rather, the present study provides justification for further investigation in the area and an increased awareness of data analysis technique to be considered in future studies.

Although these preliminary findings indicated partial support for Morris’ outcomes extending to slightly older children with more advanced language skills, the small sample size severely restricted the generalization of the findings to the general population. For instance, due to the small sample size, the authors could only visually analyze the data rather than test the findings using statistical methods. In order to conduct analyses beyond visual display comparisons and more accurately account for support of Morris’ findings, a larger sample size is needed. Future studies along this vein that include additional age ranges - both above and below those included in the present study - would provide information on informal phonological analyses for a wide range of young children at differing developmental language stages. The inclusion of children with language delays would facilitate generalizable findings to clinical populations who may perform differently than the children represented in the present study.

The data analysis techniques utilized in the present study included a measure of word shape use. All three participants performed at ceiling on this measure. Ceiling-level performances cause practical problems when calculating reliability because they prevent a variable from being measured or estimated above a certain level, or as in this case, beyond the distribution of eight different target word shapes. The particular word shape analysis utilized in the present study was selected in an effort to adhere closely with measured used by Morris. However, given the age and language development status of the Morris participants compared to those of the present participants, a
ците на Morris во споредба со сегашните учесници, може да се користи покомплексна техника за мерење на перформанси. Идните студии кои inklучуваат деца над 24-месечна возраст може да inklучуваат посуптили мерки за анализ на зборовната форма со цел по-добро да се долги различното изразување. Дополнителна забелешка на сегашните наоди вклучени во постанките кои се користат за собирање и транскрибирање на примероците од комуникацијата е, дека, и покраj тоа што беa реплицирани повеќето процедури кои се користат од страна на Morris во оваа студија, постои широк спектар на процедурални разлики кои се користат во областа за каков би-ло броj на примероци од комуникациjата и неформалните фонолошки мерки. Во оваа студиjа, почетната веродостоjност беше 62%, прилично ниска кореспонденциjа со оглед на тоа што 80% веродостоjност е често цел во кодирањето на веродостоjноста. Оваa се пока-жа како проблем во областа на логопедиjата билеjки фонетската транскрипциjа на говор-ните примероци често се користи за да се утврдат соодветните цели за интервенциjа, како за следење на напредокот со текот на времето (10). Друг придонес за вариjабил-носта при собирање и транскрипциjа на примеро-кот од комуникациjата е изборот на раз-лични сетови на играчki, укажуваjки на потенциjалот за различни фонетски материали коj би можел да влиjaат врз броjот на зборов-ните коj децата ги произведуваат и врz нив-ните фонетски инвентарjи. Многу SLP раз-лично го користат фонетското материалиjто коj се користи во сесии, во зависност од одговорите на детето на понудениот материjал. Според тоа, како изборот на играчki може да биле извор на вариjабилност во оваa студиjа, тоj служи како еколошки валидна застапеност на промената коja постои во клиничката пракса. Конечно, врz фонетскито инвентарjи може да влиjaат големината на корпусот, па така одлуката на истражувачите да се корис-тиj целиот транскрибираn примерок, a не само првите 100 збора, исто така би можело да придонесе за вариjациjи, и покраj тоа што оваа процедура била применетa подеднакво каj сите учесници. Идните студии може да се осврнат на некои од овие потенциjални изво-ри на вариjабилност и да одговорат на потре-бата за повеќе истражувања за должината на примерокот од говорот и процедурите за фо-нетска транскрипциjа кои се користат за кли-ничкото и нормативното население, со цел да се прочистат процедурите за донесување оценка врз основa на докази во областа на логопедиjата.

An additional caveat to the present findings involved the procedures used to collect and transcribe the communication sample. Although in the present study, most procedures used by Morris were replicated, there exists a wide variety of procedural differences utilized in the field for any number of communication sample collections and informal phonological measures. For instance, low inter-judge reliability when transcribing speech samples of young children occurs because the speech to be transcribed is usually quite different from adult-like forms. In the present study, initial inter-rater reliability was 62%, a fairly low correspondence considering 80% reliability is often the goal in reliability coding. This has proven to be a concern in the field of speech-language pathology as phonetic transcriptions of speech samples are often used to determine appropriate goals for intervention as well as monitor progress over time. Other contributions to variability in collection and transcribing the communication sample include choice of differing toy sets, indicating the potential for different phonetic materials which could affect the number of words children produce and the phonetic inventories elicited. Many practicing SLPS vary the phonetic material used across elicitation sessions depending on child responses to provided material. Therefore, although toy selection may be a source of variability in the present study, it serves as an ecologically-valid representation of the variability that exists in clinical practice. Finally, phonetic inventory may be affected by corpus size, so the researchers’ decision to use the entire transcribed sample rather than only the first 100 words may also have contributed to variance even though this procedure was applied consistently across participants. Future studies may address some of these potential sources of variability and address the need for more research into the length of speech sample collected and phonetic transcription procedures used for clinical and normative populations in order to refine evidenced-based assessment procedures for the speech-language pathology profession.
In conclusion, for a small sample of two-year-old children without known language delays, the test-retest reliability of initial consonant and consonant cluster productions was unstable between two conversational samples obtained one week apart under near-identical conditions. However, phonetic inventories for final consonants and word shape analyses appeared relatively stable over the one-week time period. Although more data is needed, the preliminary results of this pilot study indicated that academic faculty, clinical educators, and practicing SLPs should be mindful that while a finding of a few instances of difference across informal phonological measurement samplings does not mean the measure itself is inappropriate, it does indicate that outcomes should be cautiously interpreted for young children.

Conflict of interests

Authors declare no conflict of interests.

References